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Abstract 

In this Note, we draw a straight line between the representation theory of SU(3) and the 
SU(3)-classification schemes in particle physics. Our approach is based on that of Weyl, 
but we have in mind the versions which appear, "in modern dress," in Adams and Bott. 
Our formulation brings an important part of particle physics into line with two con- 
temporary accounts of compact Lie groups. 

1. The Group SU(3) 

We begin with a celebrated formula due to Weyl (1950, p. 381). Let SU(3) 
be the group of all 3 x 3 unitary matrices with determinant 1. Let M(e) = diag 
( e l ,  e2, ca) be a diagonal matrix in SU(3). Thus lqi  = le21 = lea[ = 1 = ele2e3. 
Let U be an irreducible representation of SU(3) on a finite-dimensional complex 
vector space, and let X be its character. Thus X(M) = Tr(U(M)), M E SU(3). Let 

~1 r G1 g l 

ter, e s, ll = e2 r e2 s t 

e f  ed  1 

where r, s are positive integers. The Weyl formula for the irreducible characters 
Xr, s of SU(3) is 

×,,s(M(e)) = le r, d ,  1 I/leZ, e, 11 r > s  

I t  follows that the irreducible characters are symmetric polynomials in 
q ,  e2, ca. Here is a table of five useful characters: 

(1) Xx,I(M(e)) = 1 

(2) Xa,I(M(e)) = el + e2 + e3 
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(3) Xa,2(M(e)) = e2e3 + e3el+ ele2 

(4) X4,2(M(e)) = 2 + eae22 + eael 2 + ele32 + ele22 + e2el 2 + e2e32 

(5) ×s,l(M(e))=l+ela+e2a+%a+eae2Z+eae~2+eaea2+ele22+e2e12 
2 

-[- e2e3 

Now every symmetric polynomial (with integer coefficients) in el, e2, e3 is 
a polynomial in the elementary symmetric functions e~ + ez + %, e:% + eae~ + 
ele2, ele2% = 1. This is the mathematical basis o f  the claim that "the quarks 
and antiquarks generate all SU(3) multiplets." 

2. The Subgroup T 

The subgroup T of  diagonal matrices is clearly commutative, hence its 
irreducible representations are one-dimensional. We recall that a one-dimensional 
representation is identical with its character. Let Xr,~ determine the irreducible 
representation Ur, s. Now the restriction of  Ur, s to T is a sum of  one-dimensional 
representations, and the Weyl formula specifies these. 

Let us write e k = exp (2rdxk), wi thxk real, k = 1, 2, 3, andx l  +x= +x3 = 0. 
Then the representation sendingM(e) to eae2 = has, as derivative at 1 E T, the 
linear map sending diag (/xl, ix2,/xa) to x2 - x v  Such a linear map is called 
a weight, and is denoted by its value x2 - xl.  Corresponding to the table of  
characters in sec. 1, we may construct a table of  weights: 

(1) 0 

(2) x t ,  x2 , x3  

(3) - x l ,  -x~,  - x 3  

( 4 )  O, O, x2  - x l ,  x l -  x 2 , x 3  --- x 2 , x 2  - x 3 , x t -  x 3 , x 3  - x1 

(5 )  0 , 3 X I ,  3 X 2 , 3 X 3 , X z - - X 1 , X 1 - - X 2 , X 3 - - X 2 , X 2 - - X 3 , X I - - X 3 , X 3 - - X 1  

The six nonzero weights in (4) are called roots, and are associated with the 
adjoint representation, whose character is indeed ×4,2- 

3. The SU(3)Multiplets 

Let Q = charge matrix = diag (2i/3, -i[3, -i/3).  Corresponding to the table 
of  weights in sec. 2, we may, by setting x 1 = 2/3, x2 = - 1/3, x3 = - 1/3, construct 
a table of  charges: 

(1) 0 

(2) 2/3, - 1 / 3 ,  - 1 / 3  

(3) - 2 / 3 ,  1/3, 1/3 

(4) 0 , 0 , - 1 , 1 , 0 , 0 , 1 , - 1  

(5) 0 , 2 , - 1 , - 1 , - 1 , 1 , 0 , 0 , 1 , - 1  
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Note the fractional charges in (2) and (3). 
Similarly, we may construct tables for Y and 13, where Y = hypercharge 

matrix = diag (i/3, i/3, -2/ /3)  and 13 = third.component.of-isospin matrix = 
diag (i]2, - i / 2 ,  0). We recognize that (2), (3), (4), (5) correspond respectively 
to quark, antiquark, octet, decuplet. Indeed, we now have enough information 
to plot the octets and decuplets. 

To work with characters, recall that 

(i) The character of the direct sum Ur, s ~o U/,s' is the sum ×r,s + Xr's'. 

(ii) The character of the tensor product Ur, s ® Ur's' is the product 
Xr, s" Xr',s'. 

(iii) The character of the dual Ur, s of Ur, s xs the complex conjugate Xr, s. 

(iv) The character of the restriction of Ur, s to SU(2) C SU(3) is obtained 
by setting e3 = 1. This is the branching law (cf. Weyl, 1950, p. 391). 

(v) The dimension of Ur, s is Xr, s (1). 

4. The Group SU(n) 

The Weyl formula for SU(n)  is 

Xq,ra rn_l(g(e))  = lerl, er2 ern-a, ll/le n-l ,  en-2 11 g~ 

where M(e)  = diag (el, e2 . . . .  , en) E SU(n) ,  r l ,  r2 . . . . .  rn-i are integers such 
that rl > r2 > " " ">  rn_ 1 > 0, and 

] e r l  , e r2, . . . .  e m-l, 11 = 

e~ l . . ,  e~--1 1 

e;? e;,n-' 1 

5. The Bialternant Symmet r i c  Funct ions  o f  Jacobi  

We return to SU(3). Let ~rj denote the elementary symmetric function of 
degree j in ea, ez, e3. Thus 

01 = e l  + ~2 + e3, 0"2 = c2e3 + e3el + e lc2,  o3 = elC2e3 = 1 

The sum of the products of the el, e2, e3, taken] at a time and with unrestricted 
repetition of any ei in a product, is called the complete homogeneous 
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symmetric function o f  degree/" and is denoted rj. Thus 

71 = el + .62 + e3 

7"2 = el 2 + 622 + (?32 + e26a + 6361 + ele2 

T3 = el 3 -I- e23 -1- e33 + e3e2 2 + e3612  -{- ele32 -I- ele2 2 + 62612 + e2c32 + ele2'e 3 

The expression 

Xr, s = let, as, 1t/le 2, e, 11 

is an example of  a bialternant. The bialtemants were studied by Jacobi, who 
proved that 

T&-I Tr- 1 
Xr, s = rs-2 rr-2 

By convention, ro = 1, r~ = 0 i f / <  0. The dual form of  a bialternant is avail- 
able, and we illustrate with the character ×4,2- The complement of  {2, 4} in 
(1, 2, 3, 4} is {1, 3}, and {4-3, 4-1)  = (1, 3}. Hence 

0103[=ola2-  1 X4,2 = 
0002 

since, by convention, Oo = 1. 
For more on the dual form, consult Aitken (1967). The dual form is o f  con- 

siderable theoretical interest, since it gives Xr, s expl ic i t ly  as a polynomial in ol, a2 
Our table of  characters may now be written as follows: 

(1) X2,1 = 1 

(2) X3,1 = Ol 

(3) x3a  = o2 

(4) 7(4,2 = a, a2 - 1 

( 5 )  XS,1 = 73 

In the case o f  SU(2) ,  the Weyl formula is 

~ =  le r, ll/te, 11 = rr-1 

the complete homogeneous symmetric function in el, e2 of  degree r - 1. Since 
ele2 = 1, one has the more familiar form 

Xr = ei (r-t) + ei "(r-3) +" " " + e~ -3 + e[ -1 

Since Xr(1) = r, X2i+l determines the "'spin ]" representation of  SU(2). 
It  is worth noting that the denominator in the Weyl formula for SU(n)  is 

the well-known Vandermonde determinant: 

i e " - l , . . . ,  e,  1t = H (e,  - e;) 
i < /  
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In this model, an elementary particle is represented by an irreducible T space. 
A given representation lr of SU(3) determines, by restriction to T, an n-tuplet of 
irreducible T spaces, where n = dim~r. Note that the "observables" Q, Y, 13 Fie in 
t, the Lie algebra of T. Of course, SU(3) has rank 2 so that Q, Y, 13 are linearly 
dependent. Nov,,, giving the representation space of rr an invariant inner product, 
we have 

7r: SU(3) ~U(n) 

wiT: T , U(1) x U(1) x " "  x U(1) C U(n) 

7r'lt: t ~ R o " " ~ R = R  n 

Thus rr assigns to each observable in t an n-tuplet of real quantum numbers. 
For example, rr'(Q) assigns, to each particle in the octet, its charge. 

It is of interest to locate Q, Y,/3 on the Stiefel diagram of SU(3) (Adams, 
1969, p. 104). 

The baryon octet and decuplet behave beautifully with respect to the Weyl 
group. The Weyl group of SU(3) is the symmetric group $3. 

(i) Octet. The Weyl group permutes amongst themselves the six particles 
located at unit distance from O; S 3 leaves alone the two remaining particles. 

(ii) Decuplet. The Weyl group permutes amongst themselves the three 
particles located at distance 2 from 0; permutes amongst themselves the six 
particles located at distance 1 from O, leaves alone the particle at the 
origin. 

To illustrate the branching law in Sec. 3, let us recover the "isospin 
multiplets." 

(iJ Octet. Set % = 1. We thereby restrict the SU(3) action to SU(2). The 
resulting symmetric polynomial is 

1 + 2(ea + e2) + (el 2 + 1 + e22) 

corresponding to 

1 ~ 2D1/2 • DI 

thus yielding an isospin singlet, two doublets, and a triplet. 
(ii) Decuplet. Set e3 = 1. We get 

@13 +el +e2 + e23) +(el 2 + 1 + e22) + (el +e2) + 1 

corresponding to 

D3/2 * D1 ~ D1/2 ~ 1 

thus yielding an isospin singlet, doublet, triplet, quadruplet. 
The diagrams for the baryon octet and decuplet are familiar and will not 

be reproduced here. We emphasize that the particles themselves are represented 
by irreducible T-spaces. For the octet, the neutron and proton are represented 
by the irreducible T-spaces ele22 and e2el 2, respectively. For the decuplet, the 
f2- particle is represented by e33. 
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